Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.418
Filtrar
1.
Environ Microbiol ; 26(4): e16620, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38627038

RESUMO

Actinomycetota, associated with macroalgae, remains one of the least explored marine niches. The secondary metabolism of Actinomycetota, the primary microbial source of compounds relevant to biotechnology, continues to drive research into the distribution, dynamics, and metabolome of these microorganisms. In this study, we employed a combination of traditional cultivation and metagenomic analysis to investigate the diversity of Actinomycetota in two native macroalgae species from the Portuguese coast. We obtained and taxonomically identified a collection of 380 strains, which were distributed across 12 orders, 15 families, and 25 genera affiliated with the Actinomycetia class, with Streptomyces making up approximately 60% of the composition. Metagenomic results revealed the presence of Actinomycetota in both Chondrus crispus and Codium tomentosum datasets, with relative abundances of 11% and 2%, respectively. This approach identified 12 orders, 16 families, and 17 genera affiliated with Actinomycetota, with minimal overlap with the cultivation results. Acidimicrobiales emerged as the dominant actinobacterial order in both macroalgae, although no strain affiliated with this taxonomic group was successfully isolated. Our findings suggest that macroalgae represent a hotspot for Actinomycetota. The synergistic use of both culture-dependent and independent approaches proved beneficial, enabling the identification and recovery of not only abundant but also rare taxonomic members.


Assuntos
Actinobacteria , Clorófitas , Alga Marinha , Humanos , Alga Marinha/microbiologia , Portugal , Bactérias
2.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612712

RESUMO

Tetraselmis chuii is an EFSA-approved novel food and dietary supplement with increasing use in nutraceutical production worldwide. This study investigated the neuroprotective potential of bioactive compounds extracted from T. chuii using green biobased solvents (ethyl acetate, AcOEt, and cyclopentyl methyl ether, CPME) under pressurized liquid extraction (PLE) conditions and supercritical fluid extraction (SFE). Response surface optimization was used to study the effect of temperature and solvent composition on the neuroprotective properties of the PLE extracts, including anticholinergic activity, reactive oxygen/nitrogen species (ROS/RNS) scavenging capacity, and anti-inflammatory activity. Optimized extraction conditions of 40 °C and 34.9% AcOEt in CPME resulted in extracts with high anticholinergic and ROS/RNS scavenging capacity, while operation at 180 °C and 54.1% AcOEt in CPME yielded extracts with potent anti-inflammatory properties using only 20 min. Chemical characterization revealed the presence of carotenoids (neoxanthin, violaxanthin, zeaxanthin, α- and ß-carotene) known for their anti-cholinesterase, antioxidant, and anti-inflammatory potential. The extracts also exhibited high levels of omega-3 polyunsaturated fatty acids (PUFAs) with a favorable ω-3/ω-6 ratio (>7), contributing to their neuroprotective and anti-inflammatory effects. Furthermore, the extracts were found to be safe to use, as cytotoxicity assays showed no observed toxicity in HK-2 and THP-1 cell lines at or below a concentration of 40 µg mL-1. These results highlight the neuroprotective potential of Tetraselmis chuii extracts, making them valuable in the field of nutraceutical production and emphasize the interest of studying new green solvents as alternatives to conventional toxic solvents.


Assuntos
Clorófitas , Ácidos Graxos Ômega-3 , Microalgas , Espécies Reativas de Oxigênio , Antagonistas Colinérgicos , Suplementos Nutricionais , Anti-Inflamatórios/farmacologia , Solventes
3.
Sci Rep ; 14(1): 8340, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594439

RESUMO

The community structure and co-occurrence pattern of eukaryotic algae in Yuncheng Salt Lake were analyzed based on marker gene analysis of the 18S rRNA V4 region to understand the species composition and their synergistic adaptations to the environmental factors in different salinity waters. The results showed indicated that the overall algal composition of Yuncheng Salt Lake showed a Chlorophyta-Pyrrophyta-Bacillariophyta type structure. Chlorophyta showed an absolute advantage in all salinity waters. In addition, Cryptophyta dominated in the least saline waters; Pyrrophyta and Bacillariophyta were the dominant phyla in the waters with salinity ranging from 13.2 to 18%. Picochlorum, Nannochloris, Ulva, and Tetraselmis of Chlorophyta, Biecheleria and Oxyrrhis of Pyrrophyta, Halamphora, Psammothidium, and Navicula of Bacillariophyta, Guillardia and Rhodomonas of Cryptophyta were not observed in previous surveys of the Yuncheng Salt Lake, suggesting that the algae are undergoing a constant turnover as the water environment of the Salt Lake continues to change. The network diagram demonstrated that the algae were strongly influenced by salinity, NO3-, and pH, changes in these environmental factors would lead to changes in the algal community structure, thus affecting the stability of the network structure.


Assuntos
Clorófitas , Diatomáceas , Dinoflagelados , Lagos/química , Fitoplâncton , Salinidade , Clorófitas/genética , China
4.
PLoS Genet ; 20(4): e1011218, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38557755

RESUMO

Symbiomonas scintillans Guillou et Chrétiennot-Dinet, 1999 is a tiny (1.4 µm) heterotrophic microbial eukaryote. The genus was named based on the presence of endosymbiotic bacteria in its endoplasmic reticulum, however, like most such endosymbionts neither the identity nor functional association with its host were known. We generated both amplification-free shotgun metagenomics and whole genome amplification sequencing data from S. scintillans strains RCC257 and RCC24, but were unable to detect any sequences from known lineages of endosymbiotic bacteria. The absence of endobacteria was further verified with FISH analyses. Instead, numerous contigs in assemblies from both RCC24 and RCC257 were closely related to prasinoviruses infecting the green algae Ostreococcus lucimarinus, Bathycoccus prasinos, and Micromonas pusilla (OlV, BpV, and MpV, respectively). Using the BpV genome as a reference, we assembled a near-complete 190 kbp draft genome encoding all hallmark prasinovirus genes, as well as two additional incomplete assemblies of closely related but distinct viruses from RCC257, and three similar draft viral genomes from RCC24, which we collectively call SsVs. A multi-gene tree showed the three SsV genome types branched within highly supported clades with each of BpV2, OlVs, and MpVs, respectively. Interestingly, transmission electron microscopy also revealed a 190 nm virus-like particle similar the morphology and size of the endosymbiont originally reported in S. scintillans. Overall, we conclude that S. scintillans currently does not harbour an endosymbiotic bacterium, but is associated with giant viruses.


Assuntos
Clorófitas , Vírus Gigantes , Vírus Gigantes/genética , Filogenia , Genoma Viral/genética , Clorófitas/genética , Metagenômica , Bactérias/genética
5.
Planta ; 259(5): 111, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578466

RESUMO

MAIN CONCLUSION: The combined photoinhibitory and PSII-reaction centre quenching against light stress is an important mechanism that allows the green macroalga Ulva rigida to proliferate and form green tides in coastal ecosystems. Eutrophication of coastal ecosystems often stimulates massive and uncontrolled growth of green macroalgae, causing serious ecological problems. These green tides are frequently exposed to light intensities that can reduce their growth via the production of reactive oxygen species (ROS). To understand the physiological and biochemical mechanisms leading to the formation and maintenance of green tides, the interaction between inorganic nitrogen (Ni) and light was studied. In a bi-factorial physiological experiment simulating eutrophication under different light levels, the bloom-forming green macroalga Ulva rigida was exposed to a combination of ecologically relevant nitrate concentrations (3.8-44.7 µM) and light intensities (50-1100 µmol photons m-2 s-1) over three days. Although artificial eutrophication (≥ 21.7 µM) stimulated nitrate reductase activity, which regulated both nitrate uptake and vacuolar storage by a feedback mechanism, nitrogen assimilation remained constant. Growth was solely controlled by the light intensity because U. rigida was Ni-replete under oligotrophic conditions (3.8 µM), which requires an effective photoprotective mechanism. Fast declining Fv/Fm and non-photochemical quenching (NPQ) under excess light indicate that the combined photoinhibitory and PSII-reaction centre quenching avoided ROS production effectively. Thus, these mechanisms seem to be key to maintaining high photosynthetic activities and growth rates without producing ROS. Nevertheless, these photoprotective mechanisms allowed U. rigida to thrive under the contrasting experimental conditions with high daily growth rates (12-20%). This study helps understand the physiological mechanisms facilitating the formation and persistence of ecologically problematic green tides in coastal areas.


Assuntos
Clorófitas , 60578 , Alga Marinha , Ulva , Ecossistema , Nitratos , Espécies Reativas de Oxigênio , Nitrogênio
6.
Environ Microbiol Rep ; 16(2): e13244, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38544360

RESUMO

A small pigmented flagellate, Micromonas, is prevalently distributed in coastal and pelagic waters. However, there have been few studies conducted to quantify their abundance in the marginal seas of the Northwest Pacific Ocean. In this study, we used fluorescent in situ hybridization with tyramide signal amplification (TSA-FISH) to reveal the spatial distribution of Micromonas in the northern South China Sea (SCS). On average, the abundance of Micromonas was 317 cells mL-1, with the average proportions in the nanoflagellates (NF) and photosynthetic picoeukaryotes (PPE) communities being 10.94% and 15.39%, respectively. This indicates a wide distribution and dominance of this genus in the studied area. The relationships between Micromonas abundance and various environmental factors suggested that biotic correlations play more important roles than physicochemical filtering on Micromonas assemblage. This may indicate a broad environmental adaptation spectrum of this genus through its flexibility in terms of resource acquisition strategies. In summary, this study provides insight into the spatial distribution pattern of Micromonas and highlights its crucial contribution to the composition of NFs and PPE communities, which rely on biological interaction to respond to the changing environmental conditions in the northern SCS.


Assuntos
Clorófitas , Fotossíntese , Hibridização in Situ Fluorescente , Oceanos e Mares , Oceano Pacífico , China , Água do Mar
7.
Sci Total Environ ; 926: 171771, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38521260

RESUMO

Assessing the interactions between environmental pollutants and these mixtures is of paramount significance in understanding their negative effects on aquatic ecosystems. However, existing research often lacks comprehensive investigations into the physiological and biochemical mechanisms underlying these interactions. This study aimed to reveal the toxic mechanisms of cyproconazole (CYP), imazalil (IMA), and prochloraz (PRO) and corresponding these mixtures on Auxenochlorella pyrenoidosa by analyzing the interactions at physiological and biochemical levels. Higher concentrations of CYP, IMA, and PRO and these mixtures resulted in a reduction in chlorophyll (Chl) content and increased total protein (TP) suppression, and malondialdehyde (MDA) content exhibited a negative correlation with algal growth. The activity of catalase (CAT) and superoxide dismutase (SOD) decreased with increasing azole fungicides and their mixture concentrations, correlating positively with growth inhibition. Azole fungicides induced dose-dependent apoptosis in A. pyrenoidosa, with higher apoptosis rates indicative of greater pollutant toxicity. The results revealed concentration-dependent toxicity effects, with antagonistic interactions at low concentrations and synergistic effects at high concentrations within the CYP-IMA mixtures. These interactions were closely linked to the interactions observed in Chl-a, carotenoid (Car), CAT, and cellular apoptosis. The antagonistic effects of CYP-PRO mixtures on A. pyrenoidosa growth inhibition can be attributed to the antagonism observed in Chl-a, Chl-b, Car, TP, CAT, SOD, and cellular apoptosis. This study emphasized the importance of gaining a comprehensive understanding of the physiological and biochemical interactions within algal cells, which may help understand the potential mechanism of toxic interaction.


Assuntos
Clorófitas , Fungicidas Industriais , Poluentes Químicos da Água , Fungicidas Industriais/toxicidade , Azóis/toxicidade , Ecossistema , Clorófitas/metabolismo , Clorofila A , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade
8.
Environ Toxicol Pharmacol ; 107: 104415, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503354

RESUMO

Myxotoxins can contaminate algal-based products and arrive to the food chain to consumers producing chronic toxicity effects. Here, we studied phytotoxicity of mycotoxins, beauvericin (BEA) and ennaitin B (ENN B) in four phytoplankton strains: Acutodesmus sp., Chlamydomonas reinhardtii, Haematococcus pluvialis, and Monoraphidium griffithii, which are all green algae. It was tested the capacity of clearing the media of BEA and ENN B at different concentrations by comparing nominal and measured quantifications. Results revealed that Acutodesmus sp. and C. reinhardtii tended to flow up and down growth rate without reaching values below 50% or 60%, respectively. On the other hand, for H. pluvialis and M. griffith, IC50 values were reached. Regarding the clearance of media, in individual treatment a decrease of the quantified mycotoxin between nominal and measured values was observed; while in binary treatment, differences among both values were higher and more noted for BEA than for ENN B.


Assuntos
Clorófitas , Depsipeptídeos , Micotoxinas , Micotoxinas/toxicidade , Ecossistema
9.
Sci Total Environ ; 926: 171663, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38485007

RESUMO

The ecological attributes of phytoplankton in freshwater environments are strongly influenced by limnological factors and temporal variability. In this study, we investigated the importance of local environmental and regional (spatial and landscape) predictors in structuring stream phytoplankton from the perspective of metacommunity theory. We seasonally sampled phytoplankton and abiotic variables from nine streams in three subtropical basins. Variation partitioning was used to investigate the influence of environmental, landscape, and spatial predictors on phytoplankton biovolume. Independent of the hydrological period (dry and rainy), the phytoplankton communities were predominantly structured by local environmental factors. In addition, the different land uses considered (landscape) showed weak significance during the dry season, with emphasis on the rural category. Biovolume values remained low, and diatoms and green algae were the most representative groups. Our findings are consistent with recognized ecological patterns for potamoplankton and emphasize local environmental filters as a fundamental regulator of phytoplankton biodiversity in lotic environments.


Assuntos
Clorófitas , Diatomáceas , Fitoplâncton , Brasil , Biodiversidade , Estações do Ano , Ecossistema , Monitoramento Ambiental
10.
Bioresour Technol ; 399: 130622, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38518877

RESUMO

This study presents the development and application of a cellulose acetate phase-inversion membrane for the efficient harvesting of Tetraselmis sp., a promising alternative for aquaculture feedstock. Once fabricated, the cellulose acetate membrane was characterized, and its performance was evaluated through the filtration of Tetraselmis sp. broth. The results demonstrated that the developed membrane exhibited exceptional microalgae harvesting efficiency. It showed a low intrinsic resistance and a high clean water permeability of 1100 L/(m2·h·bar), enabling high-throughput filtration of Tetraselmis sp. culture with a permeability of 400 L/(m2·h·bar) and a volume reduction factor of 2.5 ×. The cellulose acetate -based membrane demonstrated robust filtration performance over a 7-day back concentration filtration with minimum irreversible fouling of only 22.5 % irreversibility even without any cleaning. These results highlighted the potential of cellulose acetate as a versatile base polymer for custom-membrane for microalgae harvesting.


Assuntos
Celulose/análogos & derivados , Clorófitas , Microalgas , Filtração , Polímeros
11.
J Phycol ; 60(2): 229-253, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38502571

RESUMO

Aero-terrestrial algae are ecologically and economically valuable bioresources contributing to carbon sequestration, sustenance of soil health, and fertility. Compared to aquatic algae, the literature on subaerial algae is minimal, including studies of distinctive habitats such as forest soils, agricultural fields, deserts, polar regions, specific subaerial zones, artificial structures, and tropical soils. The primary goal here was to identify the gaps and scope of research on such algae. Accordingly, the literature was analyzed per sub-themes, such as the "nature of current research data on terrestrial algae," "methodological approaches," "diversity," "environmental relationships," "ecological roles," and "economic significance." The review showed there is a high diversity of algae in soils, especially members belonging to the Cyanophyta (Cyanobacteria) and Chlorophyta. Algal distributions in terrestrial environments depend on the microhabitat conditions, and many species of soil algae are sensitive to specific soil conditions. The ecological significance of soil algae includes primary production, the release of biochemical stimulants and plant growth promoters into soils, nitrogen fixation, solubilization of minerals, and the enhancement and maintenance of soil fertility. Since aero-terrestrial habitats are generally stressed environments, algae of such environments can be rich in rare metabolites and natural products. For example, epilithic soil algae use wet adhesive molecules to fix them firmly on the substratum. Exploring the ecological roles and economic utility of soil and other subaerial algae could be helpful for the development of algae-based industries and for achieving sustainable soil management.


Assuntos
Clorófitas , Cianobactérias , Solo/química , Plantas/microbiologia , Ecossistema
12.
J Phycol ; 60(2): 275-298, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439561

RESUMO

Thick-walled rosette-like snow algae were long thought to be a life stage of various other species of snow algae. Rosette-like cells have not been cultured, but by manually isolating cells from 38 field samples in southern British Columbia, we assigned a variety of rosette morphologies to DNA sequence. Phylogenetic analysis of Rubisco large-subunit (rbcL) gene, ribosomal internal transcribed spacer 2 (ITS2) rRNA region, and 18S rRNA gene revealed that the rosette-like cells form a new clade within the phylogroup Chloromonadinia. Based on these data, we designate a new genus, Rosetta, which comprises five novel species: R. castellata, R. floranivea, R. stellaria, R. rubriterra, and R. papavera. In a survey of 762 snow samples from British Columbia, we observed R. floranivea exclusively on snow overlying high-elevation glaciers, whereas R. castellata was observed at lower elevations, near the tree line. The other three species were rarely observed. Spherical red cells enveloped in a thin translucent sac were conspecific with Rosetta, possibly a developmental stage. These results highlight the unexplored diversity among snow algae and emphasize the utility of single-cell isolation to advance the centuries-old problem of disentangling life stages and cryptic species.


Assuntos
Clorofíceas , Clorófitas , Rodófitas , Filogenia , Clorófitas/genética , Clorofíceas/genética , RNA Ribossômico 18S/genética , Rodófitas/genética
13.
Sci Rep ; 14(1): 5542, 2024 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448468

RESUMO

There are several industrial uses for carbon black (CB), an extremely fine powdered form of elemental carbon that is made up of coalesced particle aggregates and almost spherical colloidal particles. Most carbon black is produced from petroleum-derived feedstock, so there is a need to find an alternative method to produce CB, which relies on renewable resources such as algae and agricultural waste. A process involving hydrolysis, carbonization, and pyrolysis of green algae and sugarcane bagasse was developed, as the optimal hydrolysis conditions (16N sulfuric acid, 70 °C, 1 h, 1:30 g/ml GA or SC to sulfuric acid ratio), a hydrolysis ratio of 62% for SC and 85% for GA were achieved. The acidic solution was carbonized using a water bath, and the solid carbon was then further pyrolyzed at 900 °C. The obtained carbon black has a high carbon content of about 90% which is confirmed by EDX, XRD, and XPS analysis. By comparison carbon black from sugar cane bagasse (CBB) and carbon black from green algae Ulva lactuca (CBG) with commercial carbon black (CCB) it showed the same morphology which was confirmed by SEM analysis. The BET data, showed the high specific surface area of prepared CB, which was 605 (m2/g) for CBB and 424 (m2/g) for CBG compared with commercial carbon black (CBB) was 50 (m2/g), also the mean pore diameter of CBB, CBG and CCB indicated that CBB and CBG were rich in micropores, but CCB was rich in mesoporous according to IUPAC classification. This study might have created a technique that can be used to make carbon black from different kinds of biomass.


Assuntos
Clorófitas , 60578 , Nanopartículas , Saccharum , Ácidos Sulfúricos , Ulva , Celulose , Fuligem , Carbono
14.
Curr Microbiol ; 81(5): 115, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483599

RESUMO

The diversity of bacteria associated with alpine lichens was profiled. Lichen samples belonging to the Umbilicariaceae family, commonly known as rock tripe lichens, were gathered from two distinct alpine fellfields: one situated on Mt. Brennkogel located in the Eastern European Alps (Austria), and the other on Mt. Stanley located in the Rwenzori mountains of equatorial Africa (Uganda). The primary aim of this research was to undertake a comparative investigation into the bacterial compositions, and diversities, identifying potential indicators and exploring their potential metabolisms, of these lichen samples. Bulk genomic DNA was extracted from the lichen samples, which was used to amplify the 18S rRNA gene by Sanger sequencing and the V3-V4 region of the 16S rRNA gene by Illumina Miseq sequencing. Examination of the fungal partner was carried out through the analysis of 18S rRNA gene sequences, belonging to the genus Umbilicaria (Ascomycota), and the algal partner affiliated with the lineage Trebouxia (Chlorophyta), constituted the symbiotic components. Analyzing the MiSeq datasets by using bioinformatics methods, operational taxonomic units (OTUs) were established based on a predetermined similarity threshold for the V3-V4 sequences, which were assigned to a total of 26 bacterial phyla that were found in both areas. Eight of the 26 phyla, i.e. Acidobacteriota, Actinomycota, Armatimonadota, Bacteroidota, Chloroflexota, Deinococcota, Planctomycetota, and Pseudomonadota, were consistently present in all samples, each accounting for more than 1% of the total read count. Distinct differences in bacterial composition emerged between lichen samples from Austria and Uganda, with the OTU frequency-based regional indicator phyla, Pseudomonadota and Armatimonadota, respectively. Despite the considerable geographic separation of approximately 5430 km between the two regions, the prediction of potential metabolic pathways based on OTU analysis revealed similar relative abundances. This similarity is possibly influenced by comparable alpine climatic conditions prevailing in both areas.


Assuntos
Ascomicetos , Clorófitas , Líquens , Líquens/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Filogenia , Bactérias/genética , Ascomicetos/genética , Clorófitas/genética , África
15.
Sci Total Environ ; 924: 171621, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38467252

RESUMO

A positive feedback loop where climate warming enhances eutrophication and its manifestations (e.g., cyanobacterial blooms) has been recently highlighted, but its consequences for biodiversity and ecosystem functioning are not fully understood. We conducted a highly replicated indoor experiment with a species-rich subtropical freshwater phytoplankton community. The experiment tested the effects of three constant temperature scenarios (17, 20, and 23 °C) under high-nutrient supply conditions on community composition and proxies of ecosystem functioning, namely resource use efficiency (RUE) and CO2 fluxes. After 32 days, warming reduced species richness and promoted different community trajectories leading to a dominance by green algae in the intermediate temperature and by cyanobacteria in the highest temperature treatments. Warming promoted primary production, with a 10-fold increase in the mean biomass of green algae and cyanobacteria. The maximum RUE occurred under the warmest treatment. All treatments showed net CO2 influx, but the magnitude of influx decreased with warming. We experimentally demonstrated direct effects of warming on phytoplankton species sorting, with negative effects on diversity and direct positive effects on cyanobacteria, which could lead to potential changes in ecosystem functioning. Our results suggest potential positive feedback between the phytoplankton blooms and warming, via lower net CO2 sequestration in cyanobacteria-dominated, warmer systems, and add empirical evidence to the need for decreasing the likelihood of cyanobacterial dominance.


Assuntos
Clorófitas , Cianobactérias , Fitoplâncton , Ecossistema , Dióxido de Carbono , Biomassa , Eutrofização , Lagos
16.
Sci Total Environ ; 926: 171734, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38508258

RESUMO

Botryococcus braunii has garnered significant attention in recent years due to its ability to produce high amounts of renewable hydrocarbons through photosynthesis. As the world shifts towards a greener future and seeks alternative sources of energy, the cultivation of B. braunii and the extraction of its hydrocarbons can potentially provide a viable solution. However, the development of a sustainable and cost-effective process for cultivating B. braunii is not without challenges. Compared to other microalgae, B. braunii grows very slowly, making it time-consuming and expensive to produce biomass. In response to these challenges, several efforts have been put into optimizing Botryococcus braunii cultivation systems to increase biomass growth and hydrocarbon production efficiency. This review presents a comparative analysis of different Botryococcus braunii cultivation systems, and the factors affecting the productivity of biomass and hydrocarbon in Botryococcus braunii are critically discussed. Attached microalgal growth offers several advantages that hold significant potential for enhancing the economic viability of microalgal fuels. Here, we propose that employing attached growth cultivation, coupled with the milking technique for hydrocarbon extraction, represents an efficient approach for generating renewable fuels from B. braunii. Nevertheless, further research is needed to ascertain the viability of large-scale implementation.


Assuntos
Clorófitas , Microalgas , Biomassa , Hidrocarbonetos , Fotossíntese
17.
Int J Biol Macromol ; 263(Pt 2): 130364, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401579

RESUMO

It is believed that polysaccharides will become a focal point for future production of food, pharmaceuticals, and materials due to their ubiquitous and renewable nature, as well as their exceptional properties that have been extensively validated in the fields of nutrition, healthcare, and materials. Sulfated polysaccharides derived from seaweed sources have attracted considerable attention owing to their distinctive structures and properties. The genus Codium, represented by the species C. fragile, holds significance as a vital economic green seaweed and serves as a traditional Chinese medicinal herb. To date, the cell walls of the genus Codium have been found to contain at least four types of sulfated polysaccharides, specifically pyruvylated ß-d-galactan sulfates, sulfated arabinogalactans, sulfated ß-l-arabinans, and sulfated ß-d-mannans. These sulfated polysaccharides exhibit diverse biofunctions, including anticoagulant, immune-enhancing, anticancer, antioxidant activities, and drug-carrying capacity. This review explores the structural and biofunctional diversity of sulfated polysaccharides derived from the genus Codium. Additionally, in addressing the impending challenges within the industrialization of these polysaccharides, encompassing concerns regarding scale-up production and quality control, we outline potential strategies to address these challenges from the perspectives of raw materials, extraction processes, purification technologies, and methods for quality control.


Assuntos
Clorófitas , Alga Marinha , Sulfatos/química , Clorófitas/química , Polissacarídeos/farmacologia , Polissacarídeos/química , Alga Marinha/química , Mananas , Anticoagulantes/química
18.
Proc Natl Acad Sci U S A ; 121(10): e2318542121, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38408230

RESUMO

Pyrenoids are microcompartments that are universally found in the photosynthetic plastids of various eukaryotic algae. They contain ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and play a pivotal role in facilitating CO2 assimilation via CO2-concentrating mechanisms (CCMs). Recent investigations involving model algae have revealed that pyrenoid-associated proteins participate in pyrenoid biogenesis and CCMs. However, these organisms represent only a small part of algal lineages, which limits our comprehensive understanding of the diversity and evolution of pyrenoid-based CCMs. Here we report a pyrenoid proteome of the chlorarachniophyte alga Amorphochlora amoebiformis, which possesses complex plastids acquired through secondary endosymbiosis with green algae. Proteomic analysis using mass spectrometry resulted in the identification of 154 potential pyrenoid components. Subsequent localization experiments demonstrated the specific targeting of eight proteins to pyrenoids. These included a putative Rubisco-binding linker, carbonic anhydrase, membrane transporter, and uncharacterized GTPase proteins. Notably, most of these proteins were unique to this algal lineage. We suggest a plausible scenario in which pyrenoids in chlorarachniophytes have evolved independently, as their components are not inherited from green algal pyrenoids.


Assuntos
Dióxido de Carbono , Clorófitas , Dióxido de Carbono/metabolismo , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Proteômica , Plastídeos/metabolismo , Fotossíntese/genética , Clorófitas/genética , Clorófitas/metabolismo , Plantas/metabolismo
19.
Protist ; 175(2): 126019, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309038

RESUMO

The present investigation focused on studying the phylogenetic position of the green Noctiluca endosymbiont, Pedinomonas noctilucae, collected from the Gulf of Mannar, India. In this study, we re-examined the evolutionary position of this endosymbiotic algae using rbcL sequences. The phylogenetic analysis revealed that P. noctilucae is distantly related to the Pedinomonas species, and formed a monophyletic clade with Marsupiomandaceae. Based on the phylogenetic association of endosymbiont with Maruspiomonadales it was concluded that the endosymbiont belongs to an independent genus within the family Marsupiomonadaceae. At the site of the bloom, Noctiluca scintillans was found to exhibit a dense monospecific proliferation, with an average cell density of 27.l88 × 103 cells L-1. The investigation revealed that the green Noctiluca during its senescent phase primarily relied on autotrophic nutrition, which was confirmed by the presence of a high number of trophonts, vegetatively reproducing cells (1.45 × 103 cells L-1) and the absence of food vacuoles.


Assuntos
Clorófitas , Dinoflagelados , Fitoplâncton , Filogenia , Evolução Biológica
20.
Metallomics ; 16(2)2024 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-38299782

RESUMO

Platinum uptake was examined by adding hexachloroplatinate(IV) solution to the unicellular alga Pseudococcomyxa simplex. After the addition of platinum solution ([Pt] = 100 mg/kg, pH 3.2-3.2) for a certain time, the cells were quickly frozen and subjected to µ-XRF (X-ray fluorescence) analysis using synchrotron X-rays. The beam size of approximately 1 micrometer allowed visualization of the platinum distribution within a single cell. On the other hand, we examined platinum uptake in enzyme-treated protoplasts and lyophilized cells and found that the platinum uptake concentrations in these samples were higher than in living in-vivo cells. Cell wall and cell metabolism were presumed to interfere with the uptake of hexachloroplatinate(IV) ions. All platinum ions taken up by the cells were reduced to divalent form. The effect of light on platinum addition was also investigated. When platinum was added under light conditions, some samples showed higher platinum accumulation than under shade conditions.


Assuntos
Clorófitas , Platina , Platina/farmacologia , Síncrotrons , Clorófitas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...